May 14, 2024, 4:44 a.m. | Danny D'Agostino, Ilija Ilievski, Christine Annette Shoemaker

cs.LG updates on arXiv.org arxiv.org

arXiv:2307.05639v2 Announce Type: replace
Abstract: Providing a model that achieves a strong predictive performance and is simultaneously interpretable by humans is one of the most difficult challenges in machine learning research due to the conflicting nature of these two objectives. To address this challenge, we propose a modification of the radial basis function neural network model by equipping its Gaussian kernel with a learnable precision matrix. We show that precious information is contained in the spectrum of the precision matrix …

arxiv cs.ai cs.lg cs.ne features functions networks neural networks replace stat.ml type

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Manager, Business Intelligence

@ Revlon | New York City, United States