Feb. 7, 2024, 5:44 a.m. | Haoxuan Wang Zhiding Yu Yisong Yue Anima Anandkumar Anqi Liu Junchi Yan

cs.LG updates on arXiv.org arxiv.org

We propose a framework for learning calibrated uncertainties under domain shifts, where the source (training) distribution differs from the target (test) distribution. We detect such domain shifts via a differentiable density ratio estimator and train it together with the task network, composing an adjusted softmax predictive form concerning domain shift. In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution. We employ it to adjust the uncertainty of prediction in the …

cs.cv cs.lg differentiable distribution domain form framework network predictive robust shift softmax test together train training via

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US