May 27, 2024, 4:45 a.m. | Reda Ouhamma, Maryam Kamgarpour

cs.LG updates on

arXiv:2312.08008v2 Announce Type: replace-cross
Abstract: We consider decentralized learning for zero-sum games, where players only see their payoff information and are agnostic to actions and payoffs of the opponent. Previous works demonstrated convergence to a Nash equilibrium in this setting using double time-scale algorithms under strong reachability assumptions. We address the open problem of achieving an approximate Nash equilibrium efficiently with an uncoupled and single time-scale algorithm under weaker conditions. Our contribution is a rational and convergent algorithm, utilizing Tsallis-entropy …

abstract algorithm algorithms arxiv convergence cs.lg decentralized equilibria equilibrium games information markov nash equilibrium replace scale sum type

Senior Data Engineer

@ Displate | Warsaw

Principal Architect

@ eSimplicity | Silver Spring, MD, US

Embedded Software Engineer

@ Carrier | CAN03: Carrier-Charlotte, NC 9701 Old Statesville Road, Charlotte, NC, 28269 USA

(USA) Software Engineer III

@ Roswell Park Comprehensive Cancer Center | (USA) CA SUNNYVALE Home Office SUNNYVALE III - 840 W CALIFORNIA

Experienced Manufacturing and Automation Engineer

@ Boeing | DEU - Munich, Germany

Software Engineering-Sr Engineer (Java 17, Python, Microservices, Spring Boot, REST)

@ FICO | Bengaluru, India