April 5, 2024, 4:42 a.m. | Michael Sucker, Jalal Fadili, Peter Ochs

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.03290v1 Announce Type: new
Abstract: We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best of our knowledge, we present the first framework to learn optimization algorithms with provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between convergence guarantees and convergence speed, which contrasts with the typical worst-case analysis. Our learned optimization algorithms provably outperform related ones derived from a (deterministic) worst-case analysis. The results rely on PAC-Bayesian bounds for general, possibly unbounded loss-functions based on exponential …

abstract algorithms arxiv bayesian best of case convergence cs.lg framework implementation knowledge learn math.oc optimization practical speed theory trade trade-off type

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Principal, Product Strategy Operations, Cloud Data Analytics

@ Google | Sunnyvale, CA, USA; Austin, TX, USA

Data Scientist - HR BU

@ ServiceNow | Hyderabad, India