Feb. 9, 2024, 5:44 a.m. | Tzu-Yuan Lin Minghan Zhu Maani Ghaffari

cs.LG updates on arXiv.org arxiv.org

This paper proposes an equivariant neural network that takes data in any semi-simple Lie algebra as input. The corresponding group acts on the Lie algebra as adjoint operations, making our proposed network adjoint-equivariant. Our framework generalizes the Vector Neurons, a simple $\mathrm{SO}(3)$-equivariant network, from 3-D Euclidean space to Lie algebra spaces, building upon the invariance property of the Killing form. Furthermore, we propose novel Lie bracket layers and geometric channel mixing layers that extend the modeling capacity. Experiments are conducted …

3-d algebra cs.ai cs.lg data framework making network networks neural network neural networks neurons operations paper simple space spaces vector

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Research Scientist

@ Meta | Menlo Park, CA

Principal Data Scientist

@ Mastercard | O'Fallon, Missouri (Main Campus)