Feb. 12, 2024, 5:43 a.m. | Jo\~ao A. C\^andido Ramos Lionel Blond\'e Naoya Takeishi Alexandros Kalousis

cs.LG updates on arXiv.org arxiv.org

In this paper, we introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations. MAAD utilizes a surrogate reward signal, which can be derived from various sources such as adversarial games, trajectory matching objectives, or optimal transport criteria. To compensate for the non-availability of expert actions, we rely on an inverse dynamics model that infers plausible actions distribution given the expert's state-state transitions; we regularize the imitator's policy by aligning it to the inferred action distribution. MAAD leads …

adversarial algorithm availability cs.lg distribution expert games imitation learning novel paper policy sample signal trajectory transport

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Data Engineer (m/f/d)

@ Project A Ventures | Berlin, Germany

Principle Research Scientist

@ Analog Devices | US, MA, Boston