Feb. 13, 2024, 5:45 a.m. | Meng-Chieh Lee Shubhranshu Shekhar Jaemin Yoo Christos Faloutsos

cs.LG updates on arXiv.org arxiv.org

Given a large graph with few node labels, how can we (a) identify whether there is generalized network-effects (GNE) or not, (b) estimate GNE to explain the interrelations among node classes, and (c) exploit GNE efficiently to improve the performance on downstream tasks? The knowledge of GNE is valuable for various tasks like node classification, and targeted advertising. However, identifying GNE such as homophily, heterophily or their combination is challenging in real-world graphs due to limited availability of node labels …

cs.lg cs.si discovery effects exploit exploitation generalized graph identify knowledge labels network network effects node performance tasks

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Architect

@ Dyson | India - Bengaluru IT Capability Centre

GTM Operation and Marketing Data Analyst

@ DataVisor | Toronto, Ontario, Canada - Remote

Associate - Strategy & Business Intelligence

@ Hitachi | (HE)Office Rotterdam

Senior Executive - Data Analysis

@ Publicis Groupe | Beirut, Lebanon