Jan. 1, 2023, midnight | Samuel N. Cohen, Deqing Jiang, Justin Sirignano

JMLR www.jmlr.org

Solving high-dimensional partial differential equations (PDEs) is a major challenge in scientific computing. We develop a new numerical method for solving elliptic-type PDEs by adapting the Q-learning algorithm in reinforcement learning. To solve PDEs with Dirichlet boundary condition, our “Q-PDE" algorithm is mesh-free and therefore has the potential to overcome the curse of dimensionality. Using a neural tangent kernel (NTK) approach, we prove that the neural network approximator for the PDE solution, trained with the Q-PDE algorithm, converges to the …

algorithm challenge computing differential dimensionality free major mesh numerical q-learning reinforcement reinforcement learning the curse of dimensionality type

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Software Engineer, Generative AI (C++)

@ SoundHound Inc. | Toronto, Canada