Feb. 13, 2024, 5:42 a.m. | Cheng Feng Long Huang Denis Krompass

cs.LG updates on arXiv.org arxiv.org

We present General Time Transformer (GTT), an encoder-only style foundation model for zero-shot multivariate time series forecasting. GTT is pretrained on a large dataset of 200M high-quality time series samples spanning diverse domains. In our proposed framework, the task of multivariate time series forecasting is formulated as a channel-wise next curve shape prediction problem, where each time series sample is represented as a sequence of non-overlapping curve shapes with a unified numerical magnitude. GTT is trained to predict the next …

cs.ai cs.lg dataset diverse domains encoder forecasting foundation foundation model framework general multivariate next prediction quality samples series style through time series time series forecasting training transformer zero-shot

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Scientist AI / ML - Associate 2 -Bangalore

@ PwC | Bengaluru (SDC) - Bagmane Tech Park

Staff ML Engineer - Machine Learning

@ Visa | Bengaluru, India

Senior Data Scientist

@ IQVIA | Dublin, Ireland

Data Analyst ETL Expert

@ Bosch Group | Bengaluru, India