Feb. 13, 2024, 5:46 a.m. | Andre Wibisono Yihong Wu Kaylee Yingxi Yang

stat.ML updates on arXiv.org arxiv.org

We study the problem of estimating the score function of an unknown probability distribution $\rho^*$ from $n$ independent and identically distributed observations in $d$ dimensions. Assuming that $\rho^*$ is subgaussian and has a Lipschitz-continuous score function $s^*$, we establish the optimal rate of $\tilde \Theta(n^{-\frac{2}{d+4}})$ for this estimation problem under the loss function $\|\hat s - s^*\|^2_{L^2(\rho^*)}$ that is commonly used in the score matching literature, highlighting the curse of dimensionality where sample complexity for accurate score estimation grows exponentially …

bayes continuous dimensions distributed distribution function independent loss math.st probability rate stat.ml stat.th study via

Lead Developer (AI)

@ Cere Network | San Francisco, US

Research Engineer

@ Allora Labs | Remote

Ecosystem Manager

@ Allora Labs | Remote

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote