Feb. 21, 2024, 5:41 a.m. | Phong C. H. Nguyen, Xinlun Cheng, Shahab Arfaza, Pradeep Seshadri, Yen T. Nguyen, Munho Kim, Sanghun Choi, H. S. Udaykumar, Stephen Baek

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.12503v1 Announce Type: new
Abstract: Modeling unsteady, fast transient, and advection-dominated physics problems is a pressing challenge for physics-aware deep learning (PADL). The physics of complex systems is governed by large systems of partial differential equations (PDEs) and ancillary constitutive models with nonlinear structures, as well as evolving state fields exhibiting sharp gradients and rapidly deforming material interfaces. Here, we investigate an inductive bias approach that is versatile and generalizable to model generic nonlinear field evolution problems. Our study focuses …

abstract arxiv challenge complex systems convolutional neural networks cs.lg deep learning differential dynamics fields modeling networks neural networks physics state systems type

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Alternance DATA/AI Engineer (H/F)

@ SQLI | Le Grand-Quevilly, France