Feb. 27, 2024, 5:49 a.m. | Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu Dong, Liang Chen, Zhifang Sui

cs.CL updates on arXiv.org arxiv.org

arXiv:2402.16141v1 Announce Type: new
Abstract: Supervised fine-tuning is the most common method to adapt large language models (LLMs) to downstream tasks, but full fine-tuning LLMs requires massive computational resources. Recently, parameter-efficient fine-tuning (PEFT) methods have been widely studied due to its cost-effectiveness. LoRA is one of the most widely used methods, which assumes that the optimization process is essentially low-dimensional. Although LoRA fine-tuning is effective, there is still a performance gap compared to full fine-tuning, since its weight update is …

abstract adapt arxiv breaking computational cost cs.cl fine-tuning language language models large language large language models llms lora low massive optimization peft resources supervised fine-tuning tasks type

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Data Engineer

@ Lemon.io | Remote: Europe, LATAM, Canada, UK, Asia, Oceania

Artificial Intelligence – Bioinformatic Expert

@ University of Texas Medical Branch | Galveston, TX

Lead Developer (AI)

@ Cere Network | San Francisco, US