May 9, 2024, 4:41 a.m. | Andrei Lixandru

cs.LG updates on

arXiv:2405.04664v1 Announce Type: new
Abstract: Proximal Policy Optimization with Adaptive Exploration (axPPO) is introduced as a novel learning algorithm. This paper investigates the exploration-exploitation tradeoff within the context of reinforcement learning and aims to contribute new insights into reinforcement learning algorithm design. The proposed adaptive exploration framework dynamically adjusts the exploration magnitude during training based on the recent performance of the agent. Our proposed method outperforms standard PPO algorithms in learning efficiency, particularly when significant exploratory behavior is needed at …

abstract algorithm algorithm design arxiv context cs.lg design exploitation exploration framework insights novel optimization paper policy reinforcement reinforcement learning training type

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Business Intelligence Analyst Insights & Reporting

@ Bertelsmann | Hilversum, NH, NL, 1217WP