Jan. 1, 2023, midnight | Yanwei Jia, Xun Yu Zhou

JMLR www.jmlr.org

We study the continuous-time counterpart of Q-learning for reinforcement learning (RL) under the entropy-regularized, exploratory diffusion process formulation introduced by Wang et al. (2020). As the conventional (big) Q-function collapses in continuous time, we consider its first-order approximation and coin the term “(little) q-function". This function is related to the instantaneous advantage rate function as well as the Hamiltonian. We develop a “q-learning" theory around the q-function that is independent of time discretization. Given a stochastic policy, we jointly characterize …

approximation big continuous diffusion entropy exploratory function process q-learning rate reinforcement reinforcement learning study

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

AI Engineering Manager

@ M47 Labs | Barcelona, Catalunya [Cataluña], Spain