Feb. 23, 2024, 5:43 a.m. | Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpa

cs.LG updates on arXiv.org arxiv.org

arXiv:2402.14396v1 Announce Type: cross
Abstract: A key challenge in realizing fault-tolerant quantum computers is circuit optimization. Focusing on the most expensive gates in fault-tolerant quantum computation (namely, the T gates), we address the problem of T-count optimization, i.e., minimizing the number of T gates that are needed to implement a given circuit. To achieve this, we develop AlphaTensor-Quantum, a method based on deep reinforcement learning that exploits the relationship between optimizing T-count and tensor decomposition. Unlike existing methods for T-count …

abstract alphatensor arxiv challenge computation computers count cs.lg gates key optimization quant-ph quantum quantum computers type

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Principal Applied Scientist

@ Microsoft | Redmond, Washington, United States

Data Analyst / Action Officer

@ OASYS, INC. | OASYS, INC., Pratt Avenue Northwest, Huntsville, AL, United States