Aug. 18, 2023, 8:24 p.m. | /u/Singularian2501

Machine Learning

Paper: [](

Github: [](

Blog: [](


>Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this …

abstract architectures design machine machine learning machinelearning matrix network networks neural networks processing raw research spaces symmetry tasks weight matrix

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Director of Machine Learning

@ Axelera AI | Hybrid/Remote - Europe (incl. UK)

Senior Data Scientist - Trendyol Milla

@ Trendyol | Istanbul (All)

Data Scientist, Mid

@ Booz Allen Hamilton | USA, CA, San Diego (1615 Murray Canyon Rd)

Systems Development Engineer , Amazon Robotics Business Applications and Solutions Engineering

@ | Boston, Massachusetts, USA