March 14, 2024, 4:46 a.m. | Can Liu, Jin Wang, Dongyang Yu

cs.CV updates on arXiv.org arxiv.org

arXiv:2403.08383v1 Announce Type: new
Abstract: Federated learning (FL) empowers privacy-preservation in model training by only exposing users' model gradients. Yet, FL users are susceptible to the gradient inversion (GI) attack which can reconstruct ground-truth training data such as images based on model gradients. However, reconstructing high-resolution images by existing GI attack works faces two challenges: inferior accuracy and slow-convergence, especially when the context is complicated, e.g., the training batch size is much greater than 1 on each FL user. To …

abstract arxiv cs.cv data federated learning gradient ground-truth however images preservation privacy robust training training data truth type

Senior Data Engineer

@ Displate | Warsaw

Junior Data Analyst - ESG Data

@ Institutional Shareholder Services | Mumbai

Intern Data Driven Development in Sensor Fusion for Autonomous Driving (f/m/x)

@ BMW Group | Munich, DE

Senior MLOps Engineer, Machine Learning Platform

@ GetYourGuide | Berlin

Data Engineer, Analytics

@ Meta | Menlo Park, CA

Data Engineer

@ Meta | Menlo Park, CA