March 14, 2024, 4:43 a.m. | Longxiu Huang, Xia Li, Deanna Needell

cs.LG updates on arXiv.org arxiv.org

arXiv:2302.14615v2 Announce Type: replace-cross
Abstract: Developing large-scale distributed methods that are robust to the presence of adversarial or corrupted workers is an important part of making such methods practical for real-world problems. In this paper, we propose an iterative approach that is adversary-tolerant for convex optimization problems. By leveraging simple statistics, our method ensures convergence and is capable of adapting to adversarial distributions. Additionally, the efficiency of the proposed methods for solving convex problems is shown in simulations with the …

abstract adversarial arxiv cs.cr cs.lg cs.na distributed iterative making math.na math.oc optimization paper part practical robust scale simple statistics type workers world

Senior Data Engineer

@ Displate | Warsaw

Principal Architect

@ eSimplicity | Silver Spring, MD, US

Embedded Software Engineer

@ Carrier | CAN03: Carrier-Charlotte, NC 9701 Old Statesville Road, Charlotte, NC, 28269 USA

(USA) Software Engineer III

@ Roswell Park Comprehensive Cancer Center | (USA) CA SUNNYVALE Home Office SUNNYVALE III - 840 W CALIFORNIA

Experienced Manufacturing and Automation Engineer

@ Boeing | DEU - Munich, Germany

Software Engineering-Sr Engineer (Java 17, Python, Microservices, Spring Boot, REST)

@ FICO | Bengaluru, India