Nov. 22, 2022, 2:12 a.m. | Xiang Wang, Yimin Yang, Zhichang Guo, Zhili Zhou, Yu Liu, Qixiang Pang, Shan Du

cs.CV updates on arXiv.org arxiv.org

Deep Convolutional Neural Networks (DCNNs) have exhibited impressive
performance on image super-resolution tasks. However, these deep learning-based
super-resolution methods perform poorly in real-world super-resolution tasks,
where the paired high-resolution and low-resolution images are unavailable and
the low-resolution images are degraded by complicated and unknown kernels. To
break these limitations, we propose the Unsupervised Bi-directional Cycle
Domain Transfer Learning-based Generative Adversarial Network (UBCDTL-GAN),
which consists of an Unsupervised Bi-directional Cycle Domain Transfer Network
(UBCDTN) and the Semantic Encoder guided Super Resolution …

arxiv generative adversarial network image network super resolution transfer transfer learning unsupervised

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Software Engineer, Generative AI (C++)

@ SoundHound Inc. | Toronto, Canada