Feb. 13, 2024, 5:43 a.m. | Zixun Lan Binjie Hong Jiajun Zhu Zuo Zeng Zhenfu Liu Limin Yu Fei Ma

cs.LG updates on arXiv.org arxiv.org

Predicting reactants from a specified core product stands as a fundamental challenge within organic synthesis, termed retrosynthesis prediction. Recently, semi-template-based methods and graph-edits-based methods have achieved good performance in terms of both interpretability and accuracy. However, due to their mechanisms these methods cannot predict complex reactions, e.g., reactions with multiple reaction center or attaching the same leaving group to more than one atom. In this study we propose a semi-template-based method, the \textbf{Retro}synthesis via \textbf{S}earch \textbf{i}n (Hyper) \textbf{G}raph (RetroSiG) framework …

accuracy center challenge core cs.ai cs.ce cs.lg good graph interpretability multiple performance prediction product q-bio.qm search synthesis template terms via

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Encounter Data Management Professional

@ Humana | Work at Home - Kentucky

Pre-sales Manager (Data, Analytics & AI)

@ Databricks | Stockholm, Sweden

Lecturer / Senior Lecturer - Medical Imaging

@ Central Queensland University | Mackay, QLD, AU

Intern - Research Engineer

@ Plus | Santa Clara, CA