Feb. 13, 2024, 5:44 a.m. | Felix Leopoldo Rios Alex Markham Liam Solus

cs.LG updates on arXiv.org arxiv.org

Several approaches to graphically representing context-specific relations among jointly distributed categorical variables have been proposed, along with structure learning algorithms. While existing optimization-based methods have limited scalability due to the large number of context-specific models, the constraint-based methods are more prone to error than even constraint-based DAG learning algorithms since more relations must be tested. We present a hybrid algorithm for learning context-specific models that scales to hundreds of variables while testing no more constraints than standard DAG learning algorithms. …

algorithms categorical context cs.lg dag distributed error math.co optimization relations scalability scalable stat.ml systems variables

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Research Scientist

@ Meta | Menlo Park, CA

Principal Data Scientist

@ Mastercard | O'Fallon, Missouri (Main Campus)