April 10, 2024, 4:42 a.m. | Dimitrios Michail, Lefki-Ioanna Panagiotou, Charalampos Davalas, Ioannis Prapas, Spyros Kondylatos, Nikolaos Ioannis Bountos, Ioannis Papoutsis

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.06437v1 Announce Type: cross
Abstract: With climate change expected to exacerbate fire weather conditions, the accurate anticipation of wildfires on a global scale becomes increasingly crucial for disaster mitigation. In this study, we utilize SeasFire, a comprehensive global wildfire dataset with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning. For the predictive analysis, we train deep learning models with different architectures that capture the spatio-temporal context leading to wildfires. Our investigation focuses on …

abstract arxiv change climate climate change cs.cv cs.lg dataset disaster fire global human networks neural networks prediction scale study temporal type variables weather wildfire wildfires

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Sr. BI Analyst

@ AkzoNobel | Pune, IN