March 28, 2024, 4:47 a.m. | Yiling Huang, Sarah Pirenne, Snigdha Panigrahi, Gerda Claeskens

stat.ML updates on

arXiv:2306.13829v3 Announce Type: replace-cross
Abstract: Selective inference methods are developed for group lasso estimators for use with a wide class of distributions and loss functions. The method includes the use of exponential family distributions, as well as quasi-likelihood modeling for overdispersed count data, for example, and allows for categorical or grouped covariates as well as continuous covariates. A randomized group-regularized optimization problem is studied. The added randomization allows us to construct a post-selection likelihood which we show to be adequate …

abstract arxiv categorical class count data example family functions general inference lasso likelihood loss modeling type

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

[Job - 14823] Senior Data Scientist (Data Analyst Sr)

@ CI&T | Brazil

Data Engineer

@ WorldQuant | Hanoi

ML Engineer / Toronto

@ Intersog | Toronto, Ontario, Canada

Analista de Business Intelligence (Industry Insights)

@ NielsenIQ | Cotia, Brazil