April 10, 2024, 4:41 a.m. | Mario Guevara

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.05737v1 Announce Type: new
Abstract: Development of a spatial-temporal and data-driven model of soil respiration at the global scale based on soil temperature, yearly soil moisture, and soil organic carbon (C) estimates. Prediction of soil respiration on an annual basis (1991-2018) with relatively high accuracy (NSE 0.69, CCC 0.82). Lower soil respiration trends, higher soil respiration magnitudes, and higher soil organic C stocks across areas experiencing the presence of sustainable soil management practices.

abstract accuracy arxiv carbon cs.lg data data-driven development global management practices prediction scale spatial stocks sustainable temporal type

Founding AI Engineer, Agents

@ Occam AI | New York

AI Engineer Intern, Agents

@ Occam AI | US

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne