May 16, 2024, 4:42 a.m. | Luca Ambrogioni

cs.LG updates on arXiv.org arxiv.org

arXiv:2310.02877v2 Announce Type: replace-cross
Abstract: The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are preferred in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper we show that it is possible to use improper GP priors with infinite variance to define processes that are stationary but …

abstract applications arxiv behavior covariance cs.lg data function functions gaussian processes however machine machine learning machine learning applications mean processes regression replace stat.ml type

Doctoral Researcher (m/f/div) in Automated Processing of Bioimages

@ Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) | Jena

Seeking Developers and Engineers for AI T-Shirt Generator Project

@ Chevon Hicks | Remote

Software Engineer for AI Training Data (School Specific)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Python)

@ G2i Inc | Remote

Software Engineer for AI Training Data (Tier 2)

@ G2i Inc | Remote

Principal Research Engineer - Materials

@ GKN Aerospace | Westlake, TX, US