March 7, 2024, 5:42 a.m. | John Joshua Miller, Simon Mak

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.03816v1 Announce Type: cross
Abstract: The optimization of a black-box simulator over control parameters $\mathbf{x}$ arises in a myriad of scientific applications. In such applications, the simulator often takes the form $f(\mathbf{x},\boldsymbol{\theta})$, where $\boldsymbol{\theta}$ are parameters that are uncertain in practice. Robust optimization aims to optimize the objective $\mathbb{E}[f(\mathbf{x},\boldsymbol{\Theta})]$, where $\boldsymbol{\Theta} \sim \mathcal{P}$ is a random variable that models uncertainty on $\boldsymbol{\theta}$. For this, existing black-box methods typically employ a two-stage approach for selecting the next point $(\mathbf{x},\boldsymbol{\theta})$, where $\mathbf{x}$ …

abstract applications arxiv bayesian box control cs.lg form noise optimization parameters practice robust stat.ml type uncertain variance

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Software Engineer, Generative AI (C++)

@ SoundHound Inc. | Toronto, Canada