Feb. 5, 2024, 3:43 p.m. | Ke Sun Yingnan Zhao Enze Shi Yafei Wang Xiaodong Yan Bei Jiang Linglong Kong

cs.LG updates on arXiv.org arxiv.org

The theoretical advantages of distributional reinforcement learning~(RL) over classical RL remain elusive despite its remarkable empirical performance. Starting from Categorical Distributional RL~(CDRL), we attribute the potential superiority of distributional RL to a derived distribution-matching regularization by applying a return density function decomposition technique. This unexplored regularization in the distributional RL context is aimed at capturing additional return distribution information regardless of only its expectation, contributing to an augmented reward signal in the policy optimization. Compared with the entropy regularization in …

advantages benefits categorical cs.lg distribution exploration function performance regularization reinforcement reinforcement learning uncertainty

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Intern Large Language Models Planning (f/m/x)

@ BMW Group | Munich, DE

Data Engineer Analytics

@ Meta | Menlo Park, CA | Remote, US