March 13, 2024, 4:43 a.m. | Ming Shi, Yingbin Liang, Ness Shroff

cs.LG updates on

arXiv:2306.08762v3 Announce Type: replace
Abstract: Partially observable Markov decision processes (POMDPs) have been widely applied in various real-world applications. However, existing theoretical results have shown that learning in POMDPs is intractable in the worst case, where the main challenge lies in the lack of latent state information. A key fundamental question here is: how much online state information (OSI) is sufficient to achieve tractability? In this paper, we establish a lower bound that reveals a surprising hardness result: unless we …

abstract applications arxiv case challenge cs.lg decision however information lies markov observable processes results state type world

Senior Data Engineer

@ Displate | Warsaw

Solution Architect

@ Philips | Bothell - B2 - Bothell 22050

Senior Product Development Engineer - Datacenter Products

@ NVIDIA | US, CA, Santa Clara

Systems Engineer - 2nd Shift (Onsite)

@ RTX | PW715: Asheville Site W Asheville Greenfield Site TBD , Asheville, NC, 28803 USA

System Test Engineers (HW & SW)

@ Novanta | Barcelona, Spain

Senior Solutions Architect, Energy

@ NVIDIA | US, TX, Remote