Feb. 12, 2024, 5:42 a.m. | Peter Vamplew Cameron Foale Richard Dazeley

cs.LG updates on arXiv.org arxiv.org

Multi-objective reinforcement learning (MORL) algorithms extend conventional reinforcement learning (RL) to the more general case of problems with multiple, conflicting objectives, represented by vector-valued rewards. Widely-used scalar RL methods such as Q-learning can be modified to handle multiple objectives by (1) learning vector-valued value functions, and (2) performing action selection using a scalarisation or ordering operator which reflects the user's utility with respect to the different objectives. However, as we demonstrate here, if the user's utility function maps widely varying …

algorithms case cs.lg function functions general interference multi-objective multiple q-learning reinforcement reinforcement learning value vector

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

AI Engineering Manager

@ M47 Labs | Barcelona, Catalunya [Cataluña], Spain