Feb. 6, 2024, 5:44 a.m. | Runqiu Shu Xusheng Xu Man-Hong Yung Wei Cui

cs.LG updates on arXiv.org arxiv.org

Generative adversarial network (GAN) is one of the widely-adopted machine-learning frameworks for a wide range of applications such as generating high-quality images, video, and audio contents. However, training a GAN could become computationally expensive for large neural networks. In this work, we propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN). The performance was examed numerically by benchmarking with a classical GAN using MindSpore Quantum on the task of hand-written image generation. The generator of the QC-GAN consists …

adversarial applications architecture audio become contents cs.ai cs.et cs.lg frameworks gan generative generative adversarial network hybrid images machine network networks neural networks quality quant-ph quantum training video work

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Robotics Technician - 3rd Shift

@ GXO Logistics | Perris, CA, US, 92571