Web: http://arxiv.org/abs/2206.08004

June 17, 2022, 1:10 a.m. | Adi Lichy, Ofek Bader, Ran Dubin, Amit Dvir, Chen Hajaj

cs.LG updates on arXiv.org arxiv.org

Internet traffic classification is widely used to facilitate network
management. It plays a crucial role in Quality of Services (QoS), Quality of
Experience (QoE), network visibility, intrusion detection, and traffic trend
analyses. While there is no theoretical guarantee that deep learning (DL)-based
solutions perform better than classic machine learning (ML)-based ones,
DL-based models have become the common default. This paper compares well-known
DL-based and ML-based models and shows that in the case of malicious traffic
classification, state-of-the-art DL-based solutions do …

arxiv classification cnn comparison deep deep learning learning machine machine learning malware traffic

More from arxiv.org / cs.LG updates on arXiv.org

Machine Learning Researcher - Saalfeld Lab

@ Howard Hughes Medical Institute - Chevy Chase, MD | Ashburn, Virginia

Project Director, Machine Learning in US Health

@ ideas42.org | Remote, US

Data Science Intern

@ NannyML | Remote

Machine Learning Engineer NLP/Speech

@ Play.ht | Remote

Research Scientist, 3D Reconstruction

@ Yembo | Remote, US

Clinical Assistant or Associate Professor of Management Science and Systems

@ University at Buffalo | Buffalo, NY