Feb. 9, 2024, 5:42 a.m. | Jinyeop Song Ziming Liu Max Tegmark Jeff Gore

cs.LG updates on arXiv.org arxiv.org

Neural scaling laws characterize how model performance improves as the model size scales up. Inspired by empirical observations, we introduce a resource model of neural scaling. A task is usually composite hence can be decomposed into many subtasks, which compete for resources (measured by the number of neurons allocated to subtasks). On toy problems, we empirically find that: (1) The loss of a subtask is inversely proportional to its allocated neurons. (2) When multiple subtasks are present in a composite …

cs.ai cs.lg cs.ne law laws neurons performance resources scaling scaling law

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Business Data Analyst

@ Alstom | Johannesburg, GT, ZA