Feb. 13, 2024, 5:44 a.m. | Johannes Schneider Michalis Vlachos

cs.LG updates on arXiv.org arxiv.org

Deep learning has made tremendous progress in the last decade. A key success factor is the large amount of architectures, layers, objectives, and optimization techniques. They include a myriad of variants related to attention, normalization, skip connections, transformers and self-supervised learning schemes -- to name a few. We provide a comprehensive overview of the most important, recent works in these areas to those who already have a basic understanding of deep learning. We hope that a holistic and unified treatment …

architectures attention cs.ai cs.lg deep learning key normalization optimization progress self-supervised learning success supervised learning survey transformers variants

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Architect

@ Dyson | India - Bengaluru IT Capability Centre

GTM Operation and Marketing Data Analyst

@ DataVisor | Toronto, Ontario, Canada - Remote

Associate - Strategy & Business Intelligence

@ Hitachi | (HE)Office Rotterdam

Senior Executive - Data Analysis

@ Publicis Groupe | Beirut, Lebanon