March 12, 2024, 4:45 a.m. | Lucas Cosier, Rares Iordan, Sicelukwanda Zwane, Giovanni Franzese, James T. Wilson, Marc Peter Deisenroth, Alexander Terenin, Yasemin Bekiroglu

cs.LG updates on arXiv.org arxiv.org

arXiv:2309.00854v2 Announce Type: replace-cross
Abstract: To control how a robot moves, motion planning algorithms must compute paths in high-dimensional state spaces while accounting for physical constraints related to motors and joints, generating smooth and stable motions, avoiding obstacles, and preventing collisions. A motion planning algorithm must therefore balance competing demands, and should ideally incorporate uncertainty to handle noise, model errors, and facilitate deployment in complex environments. To address these issues, we introduce a framework for robot motion planning based on …

abstract accounting algorithm algorithms arxiv balance compute constraints control cs.lg cs.ro framework motion planning obstacles planning process robot spaces state type

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

C003549 Data Analyst (NS) - MON 13 May

@ EMW, Inc. | Braine-l'Alleud, Wallonia, Belgium

Marketing Decision Scientist

@ Meta | Menlo Park, CA | New York City