Feb. 7, 2024, 5:43 a.m. | David R. Burt Yunyi Shen Tamara Broderick

cs.LG updates on arXiv.org arxiv.org

Spatial prediction tasks are key to weather forecasting, studying air pollution, and other scientific endeavors. Determining how much to trust predictions made by statistical or physical methods is essential for the credibility of scientific conclusions. Unfortunately, classical approaches for validation fail to handle mismatch between locations available for validation and (test) locations where we want to make predictions. This mismatch is often not an instance of covariate shift (as commonly formalized) because the validation and test locations are fixed (e.g., …

air pollution consistent cs.lg forecasting key locations pollution prediction predictions predictive spatial statistical stat.me stat.ml studying tasks test trust validation weather weather forecasting

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Data Analyst (Digital Business Analyst)

@ Activate Interactive Pte Ltd | Singapore, Central Singapore, Singapore