Feb. 9, 2024, 5:44 a.m. | Rachel Ward Tamara G. Kolda

cs.LG updates on arXiv.org arxiv.org

We consider alternating gradient descent (AGD) with fixed step size applied to the asymmetric matrix factorization objective. We show that, for a rank-$r$ matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $T = C (\frac{\sigma_1(\mathbf{A})}{\sigma_r(\mathbf{A})})^2 \log(1/\epsilon)$ iterations of alternating gradient descent suffice to reach an $\epsilon$-optimal factorization $\| \mathbf{A} - \mathbf{X} \mathbf{Y}^{T} \|^2 \leq \epsilon \| \mathbf{A}\|^2$ with high probability starting from an atypical random initialization. The factors have rank $d \geq r$ so that $\mathbf{X}_{T}\in\mathbb{R}^{m \times d}$ and $\mathbf{Y}_{T} \in\mathbb{R}^{n \times …

convergence cs.lg factorization gradient math.oc matrix show stat.ml

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Business Data Scientist, gTech Ads

@ Google | Mexico City, CDMX, Mexico

Lead, Data Analytics Operations

@ Zocdoc | Pune, Maharashtra, India