March 20, 2024, 4:46 a.m. | Mengzhou Li, Chuang Niu, Ge Wang, Maya R Amma, Krishna M Chapagain, Stefan Gabrielson, Andrew Li, Kevin Jonker, Niels de Ruiter, Jennifer A Clark, Phi

cs.CV updates on arXiv.org arxiv.org

arXiv:2403.12331v1 Announce Type: cross
Abstract: The latest X-ray photon-counting computed tomography (PCCT) for extremity allows multi-energy high-resolution (HR) imaging for tissue characterization and material decomposition. However, both radiation dose and imaging speed need improvement for contrast-enhanced and other studies. Despite the success of deep learning methods for 2D few-view reconstruction, applying them to HR volumetric reconstruction of extremity scans for clinical diagnosis has been limited due to GPU memory constraints, training data scarcity, and domain gap issues. In this paper, …

abstract arxiv clinical clinical trial contrast cs.cv deep learning energy however imaging improvement material photon physics.med-ph ray speed studies success type view x-ray

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Director, Clinical Data Science

@ Aura | Remote USA

Research Scientist, AI (PhD)

@ Meta | Menlo Park, CA | New York City