March 6, 2024, 5:41 a.m. | Meixia Lin, Yangjing Zhang

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.02608v1 Announce Type: new
Abstract: We consider the problem of jointly learning row-wise and column-wise dependencies of matrix-variate observations, which are modelled separately by two precision matrices. Due to the complicated structure of Kronecker-product precision matrices in the commonly used matrix-variate Gaussian graphical models, a sparser Kronecker-sum structure was proposed recently based on the Cartesian product of graphs. However, existing methods for estimating Kronecker-sum structured precision matrices do not scale well to large scale datasets. In this paper, we introduce …

arxiv cs.lg data graph graph learning math.oc matrix scalable type

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Data Scientist

@ ITE Management | New York City, United States