Jan. 31, 2024, 4:46 p.m. | Shinhoo Kang, Emil M. Constantinescu

cs.LG updates on arXiv.org arxiv.org

The growing computing power over the years has enabled simulations to become
more complex and accurate. While immensely valuable for scientific discovery
and problem-solving, however, high-fidelity simulations come with significant
computational demands. As a result, it is common to run a low-fidelity model
with a subgrid-scale model to reduce the computational cost, but selecting the
appropriate subgrid-scale models and tuning them are challenging. We propose a
novel method for learning the subgrid-scale model effects when simulating
partial differential equations augmented …

arxiv become computational computing computing power differential discovery fidelity low ordinary physics physics.flu-dyn power problem-solving scientific discovery simulations

AI Research Scientist

@ Vara | Berlin, Germany and Remote

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Data Scientist

@ ITE Management | New York City, United States