Feb. 9, 2024, 5:42 a.m. | Celal Alagoz

cs.LG updates on arXiv.org arxiv.org

The comparative performance of hierarchical classification (HC) and flat classification (FC) methodologies in the realm of time series data analysis is investigated in this study. Dissimilarity measures, including Jensen-Shannon Distance (JSD), Task Similarity Distance (TSD), and Classifier Based Distance (CBD), are leveraged alongside various classifiers such as MINIROCKET, STSF, and SVM. A subset of datasets from the UCR archive, focusing on multi-class cases comprising more than two classes, is employed for analysis. A significant trend is observed wherein HC demonstrates …

analysis cbd classification classifier classifiers cs.lg data data analysis hierarchical performance series study time series

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Data Scientist AI / ML - Associate 2 -Bangalore

@ PwC | Bengaluru (SDC) - Bagmane Tech Park

Staff ML Engineer - Machine Learning

@ Visa | Bengaluru, India

Senior Data Scientist

@ IQVIA | Dublin, Ireland

Data Analyst ETL Expert

@ Bosch Group | Bengaluru, India