April 15, 2024, 4:42 a.m. | Igor G. Smit, Zaharah Bukhsh, Mykola Pechenizkiy, Kostas Alogariastos, Kasper Hendriks, Yingqian Zhang

cs.LG updates on arXiv.org arxiv.org

arXiv:2404.08006v1 Announce Type: cross
Abstract: In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto the AMRs. In this paper, we consider an optimization problem in such systems where we allocate pickers to AMRs in a stochastic environment. We propose a novel multi-objective Deep Reinforcement Learning (DRL) approach to learn effective allocation policies to maximize pick efficiency while also aiming to improve …

abstract arxiv autonomous autonomous mobile robots collaborative cs.ai cs.lg cs.ro fair human locations math.oc mobile optimization paper policies robot robots systems through travel type uncertainty warehouse

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Data Engineer

@ Quantexa | Sydney, New South Wales, Australia

Staff Analytics Engineer

@ Warner Bros. Discovery | NY New York 230 Park Avenue South