Feb. 9, 2024, 5:44 a.m. | Lukas Herrmann Christoph Schwab Jakob Zech

cs.LG updates on arXiv.org arxiv.org

Approximation rates are analyzed for deep surrogates of maps between infinite-dimensional function spaces, arising e.g. as data-to-solution maps of linear and nonlinear partial differential equations. Specifically, we study approximation rates for Deep Neural Operator and Generalized Polynomial Chaos (gpc) Operator surrogates for nonlinear, holomorphic maps between infinite-dimensional, separable Hilbert spaces. Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems. Admissible representation systems comprise orthonormal bases, Riesz bases or suitable tight frames of …

approximation chaos construction cs.lg cs.na data differential function generalized linear maps math.na polynomial rate solution spaces study

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Data Engineer

@ Quantexa | Sydney, New South Wales, Australia

Staff Analytics Engineer

@ Warner Bros. Discovery | NY New York 230 Park Avenue South