March 20, 2024, 4:42 a.m. | Andrea Ferigo, Elia Cunegatti, Giovanni Iacca

cs.LG updates on arXiv.org arxiv.org

arXiv:2403.12076v1 Announce Type: cross
Abstract: One of the most striking capabilities behind the learning mechanisms of the brain is the adaptation, through structural and functional plasticity, of its synapses. While synapses have the fundamental role of transmitting information across the brain, several studies show that it is the neuron activations that produce changes on synapses. Yet, most plasticity models devised for artificial Neural Networks (NNs), e.g., the ABCD rule, focus on synapses, rather than neurons, therefore optimizing synaptic-specific Hebbian parameters. …

abstract arxiv brain capabilities cs.ai cs.lg cs.ne functional information neuron role show studies synapses through type

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Risk Management - Machine Learning and Model Delivery Services, Product Associate - Senior Associate-

@ JPMorgan Chase & Co. | Wilmington, DE, United States

Senior ML Engineer (Speech/ASR)

@ ObserveAI | Bengaluru