Feb. 2, 2024, 3:46 p.m. | Arshmeet Kaur Morteza Sarmadi

cs.LG updates on arXiv.org arxiv.org

The innovation of next-generation sequencing (NGS) techniques has significantly reduced the price of genome sequencing, lowering barriers to future medical research; it is now feasible to apply genome sequencing to studies where it would have previously been cost-inefficient. Identifying damaging or pathogenic mutations in vast amounts of complex, high-dimensional genome sequencing data may be of particular interest to researchers. Thus, this paper's aims were to train machine learning models on the attributes of a genetic mutation to predict LoFtool scores …

apply cost cs.lg function future genome impact innovation loss machine machine learning medical medical research next price q-bio.gn research sequencing stat.ap studies vast

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

#13721 - Data Engineer - AI Model Testing

@ Qualitest | Miami, Florida, United States

Elasticsearch Administrator

@ ManTech | 201BF - Customer Site, Chantilly, VA