March 14, 2024, 4:42 a.m. | Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang, Heqi Zheng, Conghui He, Xian-Ling Mao, Wentao Zhang

cs.LG updates on

arXiv:2403.07920v1 Announce Type: cross
Abstract: We propose ProtLLM, a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks. ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs where the natural language text is interspersed with an arbitrary number of proteins. Besides, we propose the protein-as-word language modeling approach to train ProtLLM. By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also …

abstract arxiv cs.lg dynamic enabling features inputs language language model large language large language model llm modal natural natural language pre-training protein proteins tasks text training type word

Senior Machine Learning Engineer

@ GPTZero | Toronto, Canada

ML/AI Engineer / NLP Expert - Custom LLM Development (x/f/m)

@ HelloBetter | Remote

Senior Research Engineer/Specialist - Motor Mechanical Design

@ GKN Aerospace | Bristol, GB

Research Engineer (Motor Mechanical Design)

@ GKN Aerospace | Bristol, GB

Senior Research Engineer (Electromagnetic Design)

@ GKN Aerospace | Bristol, GB

Associate Research Engineer Clubs | Titleist

@ Acushnet Company | Carlsbad, CA, United States