Feb. 13, 2024, 5:42 a.m. | Ziang Chen Jialin Liu Xiaohan Chen Xinshang Wang Wotao Yin

cs.LG updates on arXiv.org arxiv.org

Graph neural networks (GNNs) have been widely used to predict properties and heuristics of mixed-integer linear programs (MILPs) and hence accelerate MILP solvers. This paper investigates the capacity of GNNs to represent strong branching (SB) scores that provide an efficient strategy in the branch-and-bound algorithm.
Although message-passing GNN (MP-GNN), as the simplest GNN structure, is frequently employed in the existing literature to learn SB scores, we prove a fundamental limitation in its expressive power -- there exist two MILP instances …

algorithm capacity cs.lg gnn gnns graph graph neural networks heuristics linear math.oc mixed networks neural networks paper strategy

Research Scholar (Technical Research)

@ Centre for the Governance of AI | Hybrid; Oxford, UK

HPC Engineer (x/f/m) - DACH

@ Meshcapade GmbH | Remote, Germany

Senior Analytics Engineer (Retail)

@ Lightspeed Commerce | Toronto, Ontario, Canada

Data Scientist II, BIA GPS India Operations

@ Bristol Myers Squibb | Hyderabad

Analytics Engineer

@ Bestpass | Remote

Senior Analyst - Data Management

@ Marsh McLennan | Mumbai - Hiranandani