Feb. 14, 2024, 5:42 a.m. | Chen Lin Liheng Ma Yiyang Chen Wanli Ouyang Michael M. Bronstein Philip H. S. Torr

cs.LG updates on arXiv.org arxiv.org

This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining {\em \textbf{generalized propagation}} with directed and weighted graphs. The significance manifest in two ways. \textbf{Firstly}, we propose {\em Generalized Propagation Neural Networks} (\textbf{GPNNs}), a framework that unifies most propagation-based graph neural networks. By generating directed-weighted propagation graphs with adjacency function and connectivity function, GPNNs offer enhanced insights into attention mechanisms across various graph models. We delve into the trade-offs within the design space …

analysis cs.lg framework generalized graph graph learning graph neural networks graphs limitations manifest math.dg networks neural networks propagation significance study

Data Architect

@ University of Texas at Austin | Austin, TX

Data ETL Engineer

@ University of Texas at Austin | Austin, TX

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Senior Data Engineer

@ Quantexa | Sydney, New South Wales, Australia

Staff Analytics Engineer

@ Warner Bros. Discovery | NY New York 230 Park Avenue South