April 2, 2024, 7:44 p.m. | Aleksandr Beznosikov, Martin Tak\'a\v{c}, Alexander Gasnikov

cs.LG updates on arXiv.org arxiv.org

arXiv:2302.07615v2 Announce Type: replace-cross
Abstract: Variational inequalities are a broad and flexible class of problems that includes minimization, saddle point, and fixed point problems as special cases. Therefore, variational inequalities are used in various applications ranging from equilibrium search to adversarial learning. With the increasing size of data and models, today's instances demand parallel and distributed computing for real-world machine learning problems, most of which can be represented as variational inequalities. Meanwhile, most distributed approaches have a significant bottleneck - …

abstract adversarial adversarial learning applications arxiv cases class communications compression cs.dc cs.gt cs.lg distributed equilibrium math.oc search stat.ml type

Lead GNSS Data Scientist

@ Lurra Systems | Melbourne

Senior Machine Learning Engineer (MLOps)

@ Promaton | Remote, Europe

Data Analyst (Commercial Excellence)

@ Allegro | Poznan, Warsaw, Poland

Senior Machine Learning Engineer

@ Motive | Pakistan - Remote

Summernaut Customer Facing Data Engineer

@ Celonis | Raleigh, US, North Carolina

Data Engineer Mumbai

@ Nielsen | Mumbai, India