March 28, 2024, 4:45 a.m. | Jianshu Guo, Wenhao Chai, Jie Deng, Hsiang-Wei Huang, Tian Ye, Yichen Xu, Jiawei Zhang, Jenq-Neng Hwang, Gaoang Wang

cs.CV updates on

arXiv:2403.18493v1 Announce Type: new
Abstract: Recent text-to-image (T2I) models have benefited from large-scale and high-quality data, demonstrating impressive performance. However, these T2I models still struggle to produce images that are aesthetically pleasing, geometrically accurate, faithful to text, and of good low-level quality. We present VersaT2I, a versatile training framework that can boost the performance with multiple rewards of any T2I model. We decompose the quality of the image into several aspects such as aesthetics, text-image alignment, geometry, low-level quality, etc. …

abstract arxiv boost data framework good however image images improving low performance quality quality data scale struggle text text-to-image training type

Data Scientist (m/f/x/d)

@ Symanto Research GmbH & Co. KG | Spain, Germany

Robotics Technician - Weekend Day Shift

@ GXO Logistics | Hillsboro, OR, US, 97124

Gen AI Developer

@ NTT DATA | Irving, TX, US

Applied AI/ML - Vice President

@ JPMorgan Chase & Co. | LONDON, United Kingdom

Research Fellow (Computer Science/Engineering/AI)

@ Nanyang Technological University | NTU Main Campus, Singapore

Senior Machine Learning Engineer

@ Rasa | Remote - Germany